Genome-Wide Analysis of Sorbitol Dehydrogenase (SDH) Genes and Their Differential Expression in Two Sand Pear (Pyrus pyrifolia) Fruits
نویسندگان
چکیده
Through RNA-seq of a mixed fruit sample, fourteen expressed sorbitol dehydrogenase (SDH) genes have been identified from sand pear (Pyrus pyrifolia Nakai). Comparative phylogenetic analysis of these PpySDHs with those from other plants supported the closest relationship of sand pear with Chinese white pear (P. bretschneideri). The expression levels varied greatly among members, and the strongest six (PpySDH2, PpySDH4, PpySDH8, PpySDH12, PpySDH13 and PpySDH14) accounted for 96% of total transcript abundance of PpySDHs. Tissue-specific expression of these six members was observed in nine tissues or organs of sand pear, with the greatest abundance found in functional leaf petioles, followed by the flesh of young fruit. Expression patterns of these six PpySDH genes during fruit development were analyzed in two sand pear cultivars, "Cuiguan" and "Cuiyu". Overall, expression of PpySDHs peaked twice, first at the fruitlet stage and again at or near harvest. The transcript abundance of PpySDHs was higher in "Cuiguan" than in "Cuiyu", accompanied by a higher content of sugars and higher ratio of fructose to sorbitol maintained in the former cultivar at harvest. In conclusion, it was suggested that multiple members of the SDH gene family are possibly involved in sand pear fruit development and sugar accumulation and may affect both the sugar amount and sugar composition.
منابع مشابه
Response of miR156-SPL Module during the Red Peel Coloration of Bagging-Treated Chinese Sand Pear (Pyrus pyrifolia Nakai)
MicroRNA156 is an evolutionarily highly conserved plant micro-RNA (miRNA) that controls an age-dependent flowering pathway. miR156 and its target SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes regulate anthocyanin accumulation in plants, but it is unknown whether this process is affected by light. Red Chinese sand pear (Pyrus pyrifolia) fruits exhibit a unique coloration pattern in response...
متن کاملExploring Candidate Genes for Pericarp Russet Pigmentation of Sand Pear (Pyrus pyrifolia) via RNA-Seq Data in Two Genotypes Contrasting for Pericarp Color
Sand pear (Pyrus pyrifolia) russet pericarp is an important trait affecting both the quality and stress tolerance of fruits. This trait is controlled by a relative complex genetic process, with some fundamental biological questions such as how many and which genes are involved in the process remaining elusive. In this study, we explored differentially expressed genes between the russet- and gre...
متن کاملCandidate Resistant Genes of Sand Pear (Pyrus pyrifolia Nakai) to Alternaria alternata Revealed by Transcriptome Sequencing
Pear black spot (PBS) disease, which is caused by Alternaria alternata (Aa), is one of the most serious diseases affecting sand pear (Pyrus pyrifolia Nakai) cultivation worldwide. To investigate the defense mechanisms of sand pear in response to Aa, the transcriptome of a sand pear germplasm with differential resistance to Aa was analyzed using Illumina paired-end sequencing. Four libraries der...
متن کاملFine mapping of the gene for susceptibility to black spot disease in Japanese pear (Pyrus pyrifolia Nakai)
Black spot disease, which is caused by the Japanese pear pathotype of the filamentous fungus Alternaria alternata (Fries) Keissler, is one of the most harmful diseases in Japanese pear cultivation. We mapped a gene for susceptibility to black spot disease in the Japanese pear (Pyrus pyrifolia Nakai) cultivar 'Kinchaku' (Aki gene) at the top of linkage group 11, similar to the positions of the s...
متن کاملPhysical mapping of black spot disease resistance/susceptibility-related genome regions in Japanese pear (Pyrus pyrifolia) by BAC-FISH
Black spot disease, caused by Alternaria alternata Japanese pear pathotype, is one of the most harmful diseases in Japanese pear cultivation. In the present study, the locations of black spot disease resistance/susceptibility-related genome regions were studied by fluorescence in situ hybridization using BAC clone (BAC-FISH) on Japanese pear (Pyrus pyrifolia (Burm. f.) Nakai) chromosomes. Root ...
متن کامل